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Abstract

“J’wo-dimensional  convective flows in shallow cavities with adiabatic Ilorizontal boundaries

arid driven by differential heating of the two vertical e]ld walls, ale stuclied over a range of

Rayleigh numbers RI, and numerical results arc obtained for air in the nonlinear end zone on

parallel computing systems, Boundary-layer structure and a small eddy CIII the sh-eamline  field

near the lower cold corner occur at RI = 6000. At R1 :s 40000, flow separation is observed

for the first time in a numerical simulation on the bottom near the cold wall for the end-

zone problem, and a jet-like structure is formed. A detailed temporal evolution of the flow at

1/1 == 40000 is also presented.
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Non~enclature

h hciglLt of cavity

1 lellgtb  of cavity

L = I/h aspect ratio of cavity

IVu Nusse]t  number

R Rayleigh  number

RI scaled Raylcigh  number

~, !f’ l~o]~-di]l~cl]sio~]a] temperature

*,z non-dimensional coordinates

u, w non-dimensional velocity components

Greek symbols

/3 coe~cicnt of thermal expansion

J, t) non-dimensional stream function

K thermal diffusivity

v kinematic viscosity

u l’randtl number

Q, w non-dirncnsional  vorticity  function
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1 Introduction

F 1OWS drivc~l  by lateral heating in shallow cavities are of illtcrcst  in relation to many applications

in engineering: the production of crystals by the gradic~~t-frcczc tccllniqucj  cooling systems for

nuclear reactors, and the dispersion of pollutants in river estuaries. Experimental investigations of

cavity flows driven by lateral heating have been reported in [14] [17] and [15]. In general, these

flows consist ofa main circulation in which fluid rises at the hot wall, sinks at the cold wall, and

travels laterally across thcintervening core region. Atypical model ofconvection  driven by a lateral

thermal gradient consists of a two dimensional rectangular cavity with the two vertical end walls

held at different constant temperatures, and the flow structure only depends on three parameters:

Rayleigh number R, l’randtl number u, and aspect ratio 1, (length/height). Numerical studies for

these flows have been carried out by Bcjan and Ticn  [4], and Drummond  and Korpela  [8].

For a shallow cavity ( L + cm) and Ray]eigh numhcrs  R << L the flcjw is dominated by con-

duction and consists of a IIacllcy CCI1 driven by the constant horizontal temperature gradient set up

between the end walls. Nonlinear convective eflects first become significant at the ends of the cavity

where the flow is turned when R] == R/1. = 0(1). Hart [12] found tlla.t for small u the Iladley

cell is susceptible to a variety of instabilities. Fcw Rayleigll  numbers greater than a critical value

}tl = RI.(o) the parallel core flow is destroyed and replaced by stationary multiple cells [1 O]. ‘l’he

stationary transverse mode of instability actually forms an integral part of the basic steady motion

in the cavity, appearing as an imperfect bifurcation of the I Nonlinear flow in the end regions. ‘1’heir

existence was confirmed by numerical simulation of the end-~one  flow at low Prandtl numbers in [] 3]

and [19]. Solutions of the appropriate eigenvalue problcm  ([1 O]) suggest that in the case of thermally

insulated horizontal boundaries this type of bchaviour  is relevant for I’randtl  numbc.rs  rJ <0.12 and

3



\ d\,1,,the ensuing motion is then difficult to treat analytically because nonlinear ‘ ts become important

througliout the cavity for Rj > Rlc(a). For larger  Prancltl  numbers, t}LC asymptotic structures

of the crld-regioll  solutio~l as RI + cm had been discussed l)y I)anicls  [L], and numerical solutions

have been obtained for the end-region flow for several different Prandtl numbers and for a range of

values of the scaled Rayleigh number R/L by Wang and Daniels  [20] [21]. As the Rayleigh  number

increases, the extent of the end-zone increases and as RI + co a co)np]icated  asymptotic structure

develops. In the end zone near the cold wall the structure involves the formation of a thermally-

driven vertical boundary layer at the wall which entrains fluid and conveys it to the bottom corner

of cavity where it is expelled into the form of a horizontal wall jet studied by I)aniels  and Gargaro

[6]. As the jet diffuses there is a second stage of evolution wllcre both buoyancy and the effect of an

invisid recirculation in the main part of the cnd zone come o]lto play [7]. But there are no numerical

~
solutions for the end zone for very high R,ayleigh numbers and expcrimen  have only been done for

fi

F

small aspect ratios. For time-dependent thermally-driven shallow cavity  flc)ws, the temporal evolu-

tion is studied by Daniels  and Wang [9] for the nonlinear region where Iiaylcigh  number R based on

~)<.)
cavity height is of the same order of magnitude as the aspect ratio 1.. For a certain class of initial ,.?!- .-------’

~ ,1 c’ 9--

conditions the evolution is found to occur over two nomdinlcnsional  timcscales,  of order one and of -

~,’ ,

order L2. Analytical solutions for the motion throughout most of the cavil ies are found for each of

these timescales  nd numerical solutions are obtained for the nonlinear time-dependent motion in
p

the regions near each lateral wall. But for high Rayleigh ~lumbers  tirnc-dependent shallow cavity

flow, more work needs to be considered.

Tbc  present study investigates high Rayleigh ~lumbcr convective flows in end-zones of cavities

with thermally insulated horizontal surfaces and clldwalls  held at diffcrcmt fixed temperatures. The
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problem formulation, the core solution, and the end-zone problem are given in Section 2. The

numerical scheme and parallel computing techniques for the end-zone problem are discussed in

%ction 3. The steady-state solution for different Raylcigh  numbers are presented in Section 4 and

in Section 5 the evolution of time-dependent flow is discussed and numerical results arc given for a

high Rayleigh  number. Finally, conclusions are outlined in Section 6.

2 Formulation, core solution and end-zone structure

The flow domain is a rectangular cavity of length 1 and height h. The end wall at x = 1, = l/h is

maintained at a constant temperatures Al’ in excess of that at z = O and the two horizontal walls

z = (I and z = I are perfectly insulated. Subject to the oberbcck-l~oussin  csq approximation, the

governing equations of the tirne-dcpcndcnt  motions in non dimensional form as

(1)

for the vorticity  U, stream function ~ and temperature ~, and the Prandtl number o and the

Raylcigh  number R arc defined by

(4)

where g is the acceleration duc to gravity, and v, R and ~ are the ki~icrnatic viscosity, thermal

diffusivity  and coefficient of thcrnlal expansion respectively. The boundary conditions on the rigid

walls of the cavity arc

(5)
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$=:$=0% ‘7’=-1 on x=L ,

and the rigid horizontal surfaces are assumed to be insulatlrrg  so that

(6)

(7)

and the above governing equations and boundary conditions are consistent with Gill’s [11] cen-

trosymmetric properties

J(X,  Z,i) = J(L - z, 1 –Z, t),

T(X, z, t) = 1 – 7’(L -- z, 1 – z, i)

ti(z, z,t) =:(2(1.  – z, 1 – 2, t)
1

which allow only one half of the flow domain to bc considered.

The formal asymptotic structure of the steady flow ill a shallow cavity where L >> 1 and

Rl = R/L == O(1) is studied by Danie]s  et al [10]. ‘1’hroughout  most of the cavity ( the core region)

the flow is dominated by the lateral conduction associated with a lladley circulation , so that

(8)

7’=  (+ L--1{(( – ;)cl(R,, a) + R, F’(z)} ~ 0(1/-2) (9)

and

j = R,{]+ L-’c, (R,, a)} F’(2) +- O(L’2) (lo)

1
F(z) = :-- ;FZ4 + ;izs -  —

1440
(11)

and Cl (Rl, a) is a constant contribution determined by matching with solutions near the end wall.

Near the cold wall, the solution adjusts to the boundary conditions (5) in a square zone where
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X,2 = 0 ( 1 ) ,

7’= L-l T(z, z,t)+  .$.

?J=@(z, z,t)+ . . . 1 (1, -) 00) ,

(J= LJ(z, z,i) ’+...

and substitution into (1)- (3) indicates that a steady-state solution of the system

r0-1(% + J(LJ,  @)) = V2
W  - I Rl~ ,

is required. lJrorn  (5-7) these equations arc to be solved SU1 )jcct to

@ = a~)~=T=O o n  ~=0 ,

and to match with the core solution

l/) -+ R1l’’(z), T~x+c+R1l’’(z)  (X--}oo)  .

The core temperature is determined to order 1,-’1 through the lnatching  requirement

but the

Prandt]

(12)

(13)

(14)

(15)

(16)

(17)

(18)

value of c itself can only be determined by solving the end-zone problem (13)-(19). At low

numbers (u < 0.12), the behaviour  (18) is only possible for values of R1 less than a critical

value RI= ( [13], [20]), but otherwise steady-state solutions are expcctcd  to exist for any value of R1.

“1’he aitn of the present work is to determine such solutions numerically for high Rayleigh  numbers

with a 0>0.12.
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3 Numerical scheme and parallel computing techniques for

the end-zone problem

A finite difference method is considered for the system (13)-(19). The exphcit  l)ufort-Frankel  scheme

is used for the vorticity  equation (13) and the heat equation  (15), which hm  second order accuracy,

and the numerical stability is achieved by a Courant  condition. q’he Arakawa’s scheme is for the

convection terms J(u, +) and J(T, ~), which has been proven suitable for natural convective flow

problems ([I], [19]). ‘l’he Poisson equation (14) is solved by using a fast multigrid  method (Drandt

[3]) with a complete V-Cycle scheme on four-level grids and Successive Over-Relaxation as the

smoother.

‘J’he outer form (18) at z = ~ is handled by a finite truncation of z SC, that the conditions

87’
$/)= RIF(Z), -j; =  1 (20)

are applied in the computation domain as x = x~ < cx). It is then ncccssary  to ensure that

Zm is chosen sufficiently large that the computed solutic)n does indeccl approximate the actual

solution of (13)-(1 9). More details about an e-folding decay length of the end zone are given in

[10] using eigenvalue  analysis, which provide a proper scale for choosing the outer boundary of

the computational domain so the parallel core flow is matched by the end zone flow. The whole

computation of the above problem is carried out on powerful parallel computing systems, and an

efficient parallel code is designed for large Rayleigh  numbers and aspect, ratios by using domain

decomposition techniques. A 2D original fine mesh and its derived coarse meshes are partitioned

into blocks of consecutive columns and distributed onto a li~lear array of processors (Figure 1). Since

a large aspect ratio is considered, the above partition is optimal m it nliuirnizcs  the interproccssor
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communication and maximizes the computing on each node. But tb]rnber  of processors that

should be used varies according to the problem to be solved. - ‘<’ Z:4P 5In general, a good parallel code

“ “?-f ., .Z

should have a balanced computational load on each nocle, the indcpendcllt  of computing nodes, and

minimize internode communication. Focusing these techniques, a parallel  code for the end zoneI

problems of natural convective flows has been implemented on the 1 ntel Paragon, Intel Touchstone

Delta, and Cray T3D systems. A detailed description of the numerical scheme and parallel computing

techniques is presented in Wang and Ferraro [22].

4 Steady-state solutions

Numerical solutions are obtained for a range of Rayleigh  numbers Iil varying from 6000 to 40000

with u = 0.733 . l)iffcrent  truncation values z~ of the end zone near the cold wall have been

used for different ltayleigh numbers. Most computations are carried out  by using 16, 32, and 64

processors, and the choice of numbers of processors clepcnds  on the grid size used. l’he  time step At

is restricted by spatial and Ray]eigh numbers, varying from 10–3 to 10– 5 for RI ranging from 6000

to 40000. Since an explicit scheme is used for vorticity  and temperature, at each time step only one

linear systcm  derived from the Poisson equation needs to bc solved, and a r)arallel multigrid  solver

haa been efficiently used for this problem. For each pair of RI and u, contour plots of the stream

fu~~ction,  vorticity,  and temperature are displayed. Figures 2 – 5 illustrate detailed contour plots

for 6000< Rl ~ 40000, which show the influence of RI on the flow structure. When RI = 6000, a

vertical thcrrnal  boundary layer is fc)rmed on the cold wall, a~ld a small eddy occurs in the streamline

field near the lower cold corner. At the higher Rayleigh  numl,crs,  the vertical boundary layer is much

thinner, and the strongest horizontal temperature gradients are set up near the top corner of the
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cold wall, where there is vigorous convection down the wall. r ddy gradually moves further down

to the lower cold corner, and at ltl = 25000 more tharl  orle eddy is ot)scrvcd near the boundary

area.  Whcu RI is increased to 40000 , the flow structure bCCOIIICS  IIIUCII  l]lorc complicated, and a

jet-like structure is set up. Near the bottom corner of the cold wall, several small eddies can be

clearly identified. Daniels  and Gargaro  [6] have discussed the thermal wall jet by using asymptotic

and numerical methods for solving a similar vertical boundary layer equation there they described
A
\ tie

1
initial structure of the jet and its subsequent diffusion at large distances downstream for a class of

initial velocity and temperature profiles relevant to intrusion jets observed in certain thermal cavity

‘/

flows. In

vorticity,

l-l
Figure 6, a strong vorticity source at the lower corner  is also shmwx$  at the contours of

and the flow is divergent away from the lower horizontal boul)dary;  a separation of flow

occurs on the bottom near the lower corner. ‘l%ese have been studied experi rncnt ally as well in finite

cavities by Bejan,  A1-homond and lmberger  [2], and more recently transie~lt, features of the motion

for high ltayleigh  numbers in a square cavity have been investigated in [14], [1 7], and [15]. Ilut for

the region Iil = R/1, = 0(1), the jet-like structure and the srparatiol]  flow arc observed numerically

here for the first time. According to present numerical results, the flow separation should first occur

around 25000 < RI ~ 40,000. Obviously, at present, there  are 1)0 cxperirnent  results available

for this case. Some analytical results will provide a comparison to a certain extent, but a precise

comparison is not available. Further properties of the flow are displayed ill Figures 6,7, and 8. In

Figure 6, the temperature indicates two distinct flow regions: the thin boundary layer region and the

parallel core region. l’he  skin friction also shows the cornplcx end rcgio]l and the core region, The

skin friction curve gives a clear picture of the stro~lg  vortici ty source zone and the flow separation

zone. The  complication of the flow is also shown in the velocity field. Figure 7 gives the vertical
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L?lvelocity at various position of z. The z = 0.0625 (d sh line) curve disldays  the upstream and

the downstream flow near the cold wall, which corresponds to the reverse flow on the bottom. l’he

z = ().2188  (solid line) curve shows that tlie flOW  k influenced by the multil)le-eddy  structure, and

that the velocity has multiple local minimum and maximum values. At z = 0,5156 (dotted line), the

boundary layer structure and the core structure are clearly distinguished. In Figure 8, horizontal

velocity is displayed at various locations of z. At z = 0.2344 (dashed line), the eddy structure near

the bottom area of the cavity, and at z = 0.4687 (solid line), the reverse flow at the bottom is visible.

At z = 0.625 (dotted line), the fluid travels to the cold wall through the upper part of the cavity

and travels back to the hot wall through the lower part of the cavity. It is easy to note that the

most complicated flow pattern is located in 0.0 ~ x ~ 1.0, and this square area indicates various

flow phenomena.

5 The evolution of time-dependent, flow

Recently, the time dependent flow in thermally-driven cavil ies has attracted wide attention due to

many geophysical and industrial applications. Patterson and lmberger  [16] carried out one of the first

investigation of the transient flow in a rectangular cavity, ill which a thcoretica]  and computational

investigation identified many of the important length, time and velocity scales of the flow, allowing

a classification of the various possible flow regions. A numtwr  of interesting features were revealed,

including an oscillatory approach to steady state under certain conditions. lvey [14] carried out a

series of experiments designed to test for the existence of the oscillatory behaviour,  and evidence

of the oscillations was found. Schladow,  Patterson and Street [18] performed more detail numerical

simulations of the lvey experiment. Their results showed the oscillatory behaviour  in the net  Nusselt
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number, and supported the conclusions of [16]. 1 n contrast, there has  been comparatively little

work on the time-evolution of flows in shallow cavities where L >> 1. One of the first rational

investigations of the evolution of thcrrnal]y  drivc~l shallow cavity flows was carried out by Daniels

and Wang [9]. There they discussed the evolution of the flow with a certain class of initial conditions

both analytically and numerically. But for high Rayleigh ~lumber  flows more work on t}]e evolution

needs to be considered. ‘l’he present study focuses on a high Rayleigh number evolution flow which

starts from a steady state solution of a lower RI. Numerical results are presented as following.

Figure 9 shows the streamline of RI = 40,000 with 0::0.733 at a different time level and the

steady state solution of RI = 25,000 was used for an initial condition. It is interesting to note that

at an early  time t = 8 x 10-3 the end hone is filled with a strong nc)nlincar flow. nut with the

increasing of time, the perturbations decay on the horizontal intrusion before the far wall is reached

and eventually die away when the flow approaches the final steady state. ‘J%ese behaviors appear

to be of similar character to those observed by setting an initial profile of the form

(21)

with a = 4 discussed in [9]. 13ut here it must be noted that these waves were not generated by either

the flow initiation or the impact of the intrusion, and are due to increasing the Rayleigh  number

instantaneously. At i -+ co, the waves will not propagate over the length of the cavity but will

decay as they travel horizontally. In Figure 10, the vertical velocity field at z = 0.5 is illustrated

in time, and it is clear that it is clisturbed  by the occurrence of perturbations due to the sudden

increase of Rayleigh number and has an oscillatory behavic,ur around O ~ z < 3. The influence of

traveling instabilities is obvious at the early time, and this phenomenon disappears as t a co, But

the properties of the instability of the boundary layer and tile flow separation exist during the whole
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evolution of flow, and those  features are determined by Rayleigh  number Itl, Prandtl number o, and

the aspect ratio 1,. ‘J’he initial set up significantly influences flow slructure during the transition.

‘1’l~e local Nussclt  numbers Nu = ~ on t}le cold wall and on z: = 0.5 arc illustrated in Figures 11

and 12 respectively. On the cold wall, since the strong temperature gradient is set up at the upper

corner, the most contribution for local Nusselt  numbers con Ies from the upper region, and decreases

as z tends to zero. But at x = 0.5, a sharp  tempt.rature gradient is set up at 0.2< z < 0.3, which

exhibits jet-like behaviour  in regions at the bottom of the cold wall ( and the top of the hot wall)

where fluid descending (or

6 Conclusions

ascending) in a vertical boundary layer lJenetrtites  into the core.

in this paper, a detailed numerical study of the cnd zone in a shallow cavity with insulated horizontal

boundaries has been

eddy near the lower

cold wall around RI

described for higher Ray]eigh number  flows. For steady  state flows, a single

corner occurs around RI = 6000, and multiple eddies are formed near the

= 25000. A jet-like motion appears when Rayleigh numbers go higher, and

eventually at Itl w 40000 flow separation is observed on the bottom near the cold

these features in the end zone indicates that the flow there is connectively-dominated ,

wall. All of

and that the

boundary layer instability exists at large Rayleig]l numbers. ‘l’his bounclary  layer instability is of

fundamental importance in the development of the flow in the next stage. For the time-dependent

flow, strong nonlinearities  are immediately observed for a relatively large area near the cold wall

after the flow starts from a steady state solution  c)f a lower }~aylcig;h number. ‘llravelling  waves are

generated near the cold wall and as i + co these waves decay away ancl eventually die when the

steady state is reached. In the future we hope to use a fast  parallel ada~hive composite multigrid
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method in a parallel computing environment for modellirrg large Rayleigh nu~nber  convective flows

in three dimensions, which will give a better approximation of a real flow IJro})lcnl.
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the cold wall,

11. ‘I’he local Nusselt  number &f’/8x  with o = 0.733 and RI = 40000 for different time levels at

x = ().5.

12. ‘1’he profile of vertical velocity w for the time depcndrnt  solution at x = 0.5.
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